RISC-V на международных суперкомпьютерных конференциях: доклады, новинки, тренды

Валерия Пузикова, к.ф.-м.н., эксперт по разработке ПО

Валерия Пузикова

К.ф.-м.н., эксперт по разработке ПО, руководитель команды разработки математических библиотек, YADRO

- С 2010 года разрабатываю и реализую на С/С++ с CUDA/MPI/OpenMP численные методы для решения задач линейной алгебры, вычислительной аэрогидродинамики, AR/VR.
- Работала в Huawei, Fortum, ИСП РАН им. В.П. Иванникова, МГТУ им. Н.Э. Баумана и др.

HPC на RISC-V: почему уже пора?

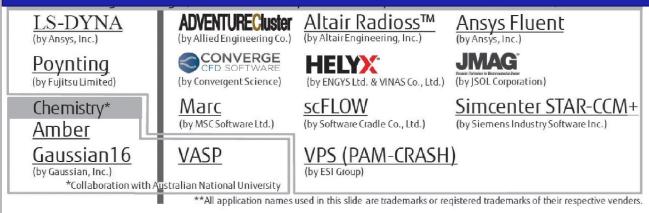
HPC в мировых трендах экосистемы RISC-V

Примеры докладов с HPC RISC-V воркшопов 2024

RISC-V HW: на чем тестировать HPC SW уже сейчас и чего ждать

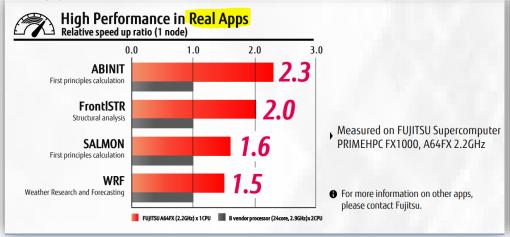
Выводы и полезные ссылки

HPC на ARM: Fujitsu Fugaku №1 – с 2020 года



- Впервые суперкомпьютер на ARM (причем гомогенный) стал №1 в Тор500.
- Единственный в истории стал №1 во всех основных суперкомпьютерных рейтингах
- До сих пор №1 в HPCG, HPL-AI, Graph500.

- **Мировой рекорд:** число ядер увеличили на 4,5%, а производительность на Linpack выросла на 6,4%, на HPCG в 5,4 раза.
- **На 45% превосходит** производительность всех остальных суперкомпьютеров из **Top10 HPCG**.


Fujitsu готовила SW экосистему с 2014 года

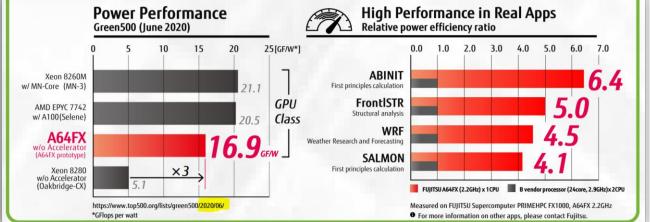
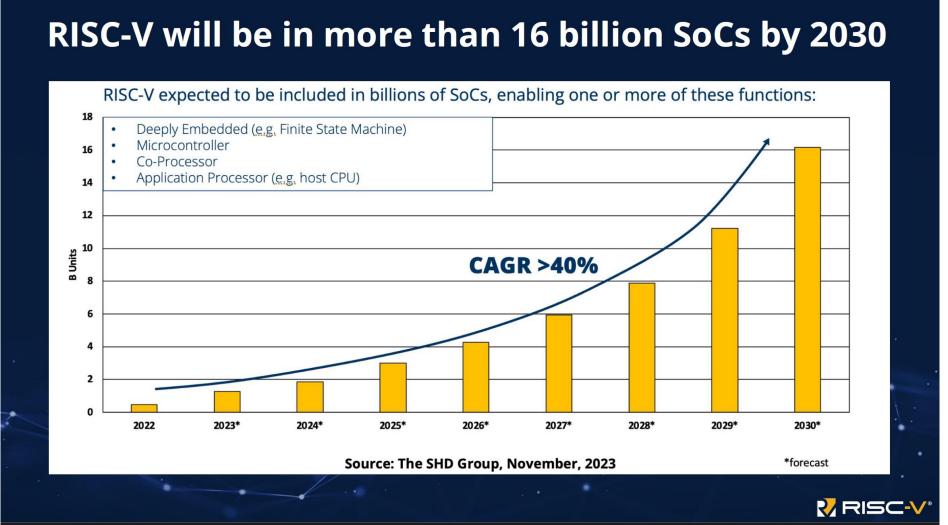
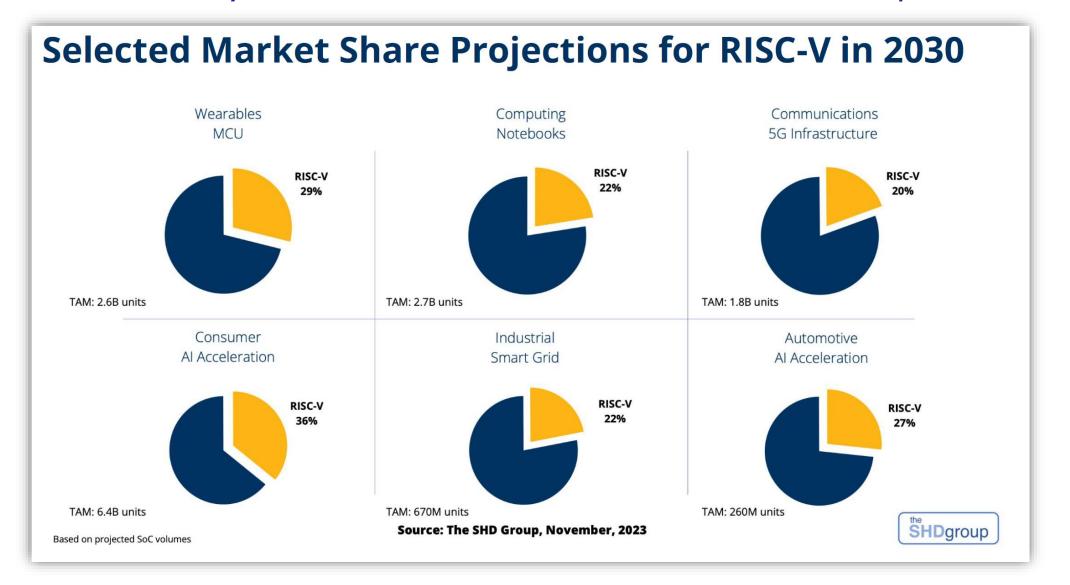

Мораль: развитие SW экосистемы HW – дело <u>важное</u> и <u>долгое</u>!

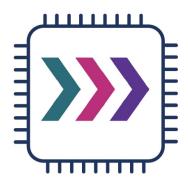
Рис. 8. Совместные разработки Fujitsu с независимыми поставщиками прикладного ПО, которые могут выполняться на FX1000, FX700 и Fugaku.


Немного статистики из мира RISC-V

TA


Прогнозируемый рост впечатляет

* CAGR – совокупный среднегодовой темп роста.


К 2030 году RISC-V займет не менее пятой части рынков

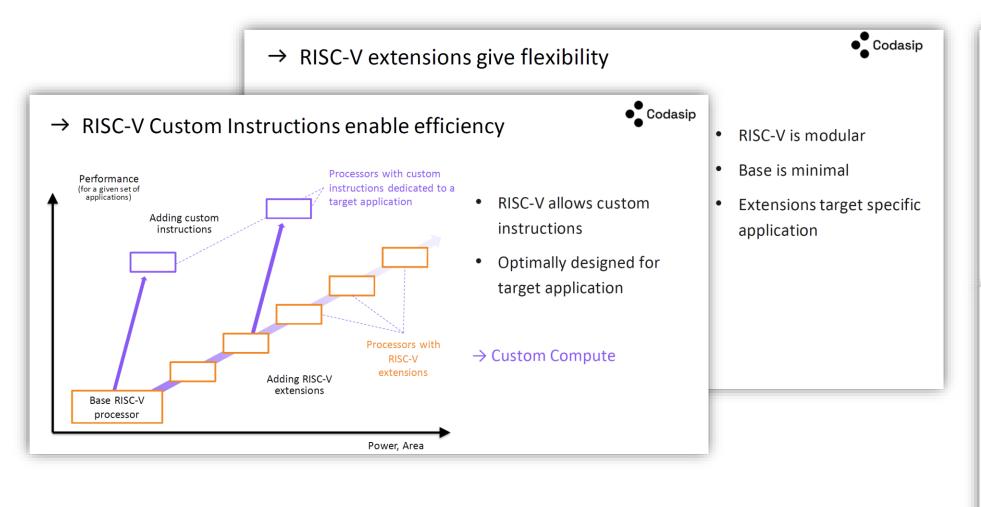
Ближайшие прогнозы по высокопроизводительным ядрам

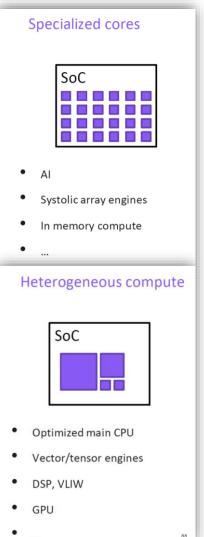
Industry outlook: Datacenter & Cloud

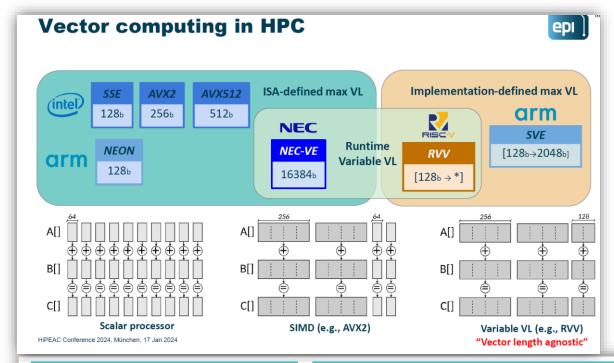
RISC-V offers unique opportunity for accelerators

Custom computing for Al and other emerging workloads

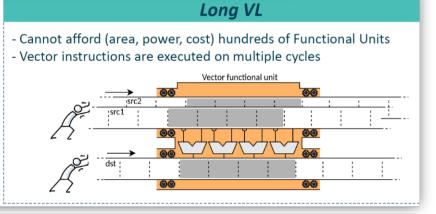
Achieve your performance and power targets


RISC-V CPU core market will grow 115% CAGR, capturing >14% of all CPU cores by 2025

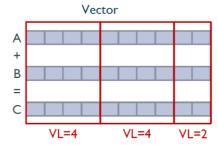

Semico Research, December 2021


KO

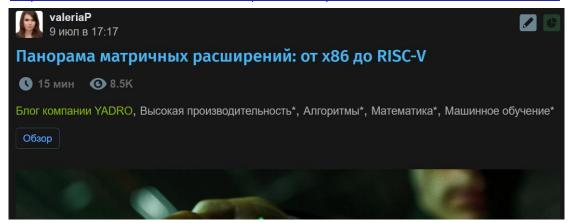

Плюсы RISC-V: модульная архитектура



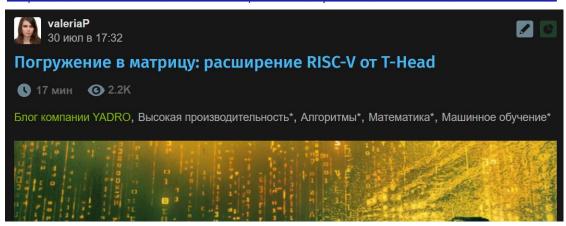
Векторное расширение RISC-V RVV



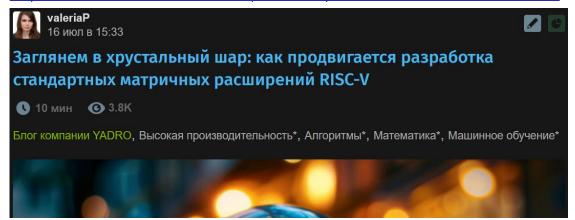
Vector Length Agnostic Code


- VL is loaded prior to executing the vector instruction with a special instruction
- No need to handle "loop tails"
- Makes the code "vector length agnostic"

```
void axpy(double a, double *dx, double *dy, int n) {
      long gvl = __builtin_epi_vsetvl(n, __epi_e64, __epi_m1);
       epi 1xf64 \ v \ a = MM \ SET \ f64(a, gvl);
12
13
      for (i = 0; i < n; i += gvl) {
        gvl = builtin epi vsetvl(n - i, epi e64, epi m1);
14
15
         epi 1xf64 \ v \ dx = MM \ LOAD \ f64(\&dx[i], gvl);
16
         epi_1xf64 v_dy = MM_LOAD_f64(\&dy[i], gvl);
17
          epi 1xf64 \text{ v res} = \text{MM MACC } f64(\text{v dy}, \text{v a, v dx, gvl});
18
         MM STORE f64(&dy[i], v res, gvl);
19
```



Разработка матричных расширений RISC-V


https://habr.com/ru/companies/yadro/articles/827430/

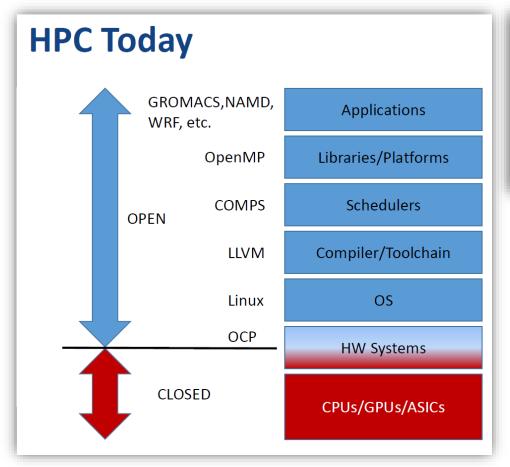
https://habr.com/ru/companies/yadro/articles/827434/

https://habr.com/ru/companies/yadro/articles/827432/

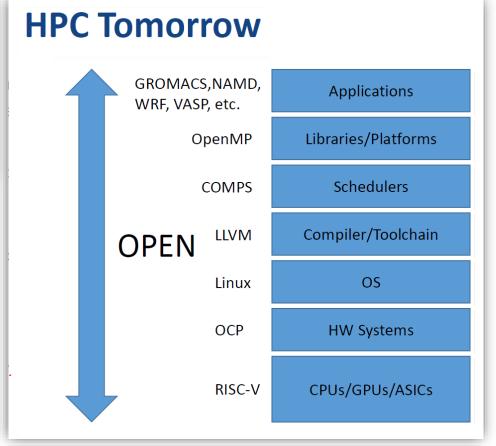
https://habr.com/ru/companies/yadro/articles/833948/

HPC на RISC-V: почему уже пора?

HPC в мировых трендах экосистемы RISC-V


Примеры докладов с HPC RISC-V воркшопов 2024

RISC-V HW: на чем тестировать HPC SW уже сейчас и чего ждать

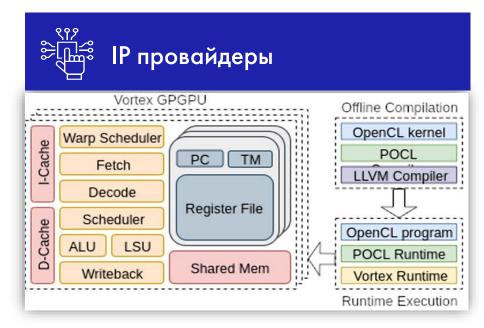

Выводы и полезные ссылки

Новый мировой тренд – парадигма Ореп НРС

He только стек HPC SW должен быть open-source, но и HPC HW

RISC-V HPC инициативы

Европейская инициатива по развитию собственной технологической независимости EPI (European Processor Initiative) предполагает разработку процессоров и ускорителей на базе RISC-V: решения на ARM не признаются ее частью.



Крупнейшие европейские HPC центры – BSC (Barcelona Supercomputing Center) и EPCC (Edinburgh Parallel Computing Center) – активно развивают центры компетенции RISC-V в рамках грантовой поддержки Euro HPC (правительственная инициатива).

HPC тренды в развитии RISC-V HW и SW

- Появляются высокопроизводительные ядра: несколько IP провайдеров разрабатывают процессоры для дата-центров.
- На базе архитектуры RISC-V разрабатываются не только СРU, но и **ускорители** (GPU, AI).

- Первая RISC-V HPC система ожидается в 2025-2026 гг. в рамках 6-й реинкарнации европейского суперкомпьютера MareNostrum (BSC).
- Консорциум RISE (RISC-V Software Ecosystem) фокусируется на адаптации ключевого стека ПО для RISC-V, а также ускорении разработки СПО для RISC-V.

RISE RISC-V Optimization Guide

Vendor agnostic porting and optimization guide

- Does not cover CPU specific microarchitecture
 Best practices for high performance RISC-V cores
 - Including assembly code examples

Zero can be folded into any instruction with a register operand. There's no need to initialize a temporary register with 0 for the sole purpose of using that register in a subsequent instruction. The following table identifies cases where a temporary register can be eliminated by prudent use of x0.

00	Don't	
fmv.d.x f0,x0	li x5,0 fmv.d.x f0,x5	
amoswap.w.aqrl a0,x0,(x10)	li x5,0 amoswap.w.aqrl x6,x5,(x10)	
sb x0,0(x5)	li x6,0 sb x6,0(x5)	
bltu x0,x7,1f	li x5,0 bltu x5,x7,1f	

https://riscv-optimization-guide.riseproject.dev/

Тематика HPC RISC-V воркшопов

- Примеры использования и тематические исследования с RISC-V
- Уроки, извлеченные из использования RISC-V в HPC
- Отраслевые документы, посвященные изучению использования RISC-V
- Перенос кода на RISC-V
- Новое оборудование и ускорители на основе RISC-V
- Инструменты и методы, помогающие использовать RISC-V для HPC
- Наработки в библиотеках HPC для их переноса на RISC-V
- Расширения RISC-V, ускоряющие HPC приложения
- Компилятор и поддержка среды выполнения для RISC-V
- Экосистема RISC-V
- Взгляд в будущее: как RISC-V может развить сообщество HPC
- И все, что связано с RISC-V и HPC!

- Организация
 <u>семинаров</u> по НРС
 на RISC-V на
 профильных
 международных
 конференциях
- Р Цель популяризация RISC-V в НРС (способствовать портированию НРС SW на RISC-V и т.д.)

HPC RISC-V воркшопы: 2024

Strategic EU-level perspective on RISC-V

RISC-V: the cornerstone ISA for the next generation of HPC infrastructures

17th January 2024 | **Alexandra Kourfali** | Munich, DE

HiPEAC 2024

- RISC-V Workshop: RISC-V: the cornerstone ISA for the next generation of HPC infrastructures
 - · Organizers: E4 and BSC
 - Accepted
- Full Day workshop
- Munich, Germany
- January 17-19, 2024
- More details next meeting...

Upcoming RISC-V HPC Events

- HPC Asia RISC-V Workshop
 - https://riscv.epcc.ed.ac.uk/community/hpcasia24-workshop/
 - o 25th Jan 2024

- Fourth International workshop on RISC-V for HPC
 - https://riscv.epcc.ed.ac.uk/community/isc24-workshop/
 - o 16th May 2024

- RISC-V Summit Europe
 - https://riscv.epcc.ed.ac.uk/community/isc24-workshop/
 - o 24 27th June 2024

Workshop at HPC-Asia

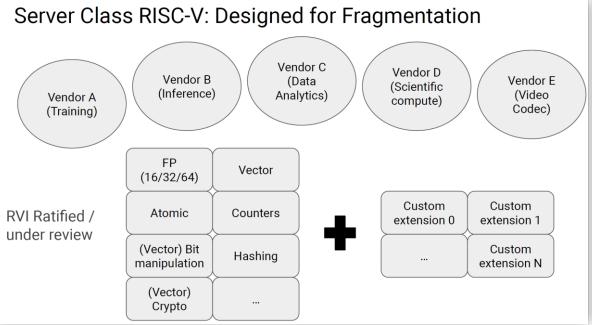
- Workshop HPC-Asia (Nagoya, Japan): Third International Workshop on RISC-V for HPC (RVHPC)
 - · Michael Wong, Nick Brown, and John Davis submitted a workshop proposal
 - · Conference, end of January, 2024 about 500 people
 - Accepted
 - ½ Day (morning)

HPC на RISC-V: почему уже пора?

HPC в мировых трендах экосистемы RISC-V

Примеры докладов с HPC RISC-V воркшопов 2024

RISC-V HW: на чем тестировать HPC SW уже сейчас и чего ждать


Выводы и полезные ссылки

Challenges of Building an Open Source Ecosystem (1/2)

Problem Statement

- Silicon companies want to release hardware for which optimised OSS stacks are already present
- OSS community wants to support all platforms which users would like to run on
- Many different micro-architectures to bring to market
- Representative hardware doesn't exist yet (although RISC-V vector CPUs do exist)
- Avoid leaking of proprietary information before hardware is released
- Limited resources in:
 - Silicon companies can't port everything themselves
 - o OSS community need to prioritise work in terms of impact

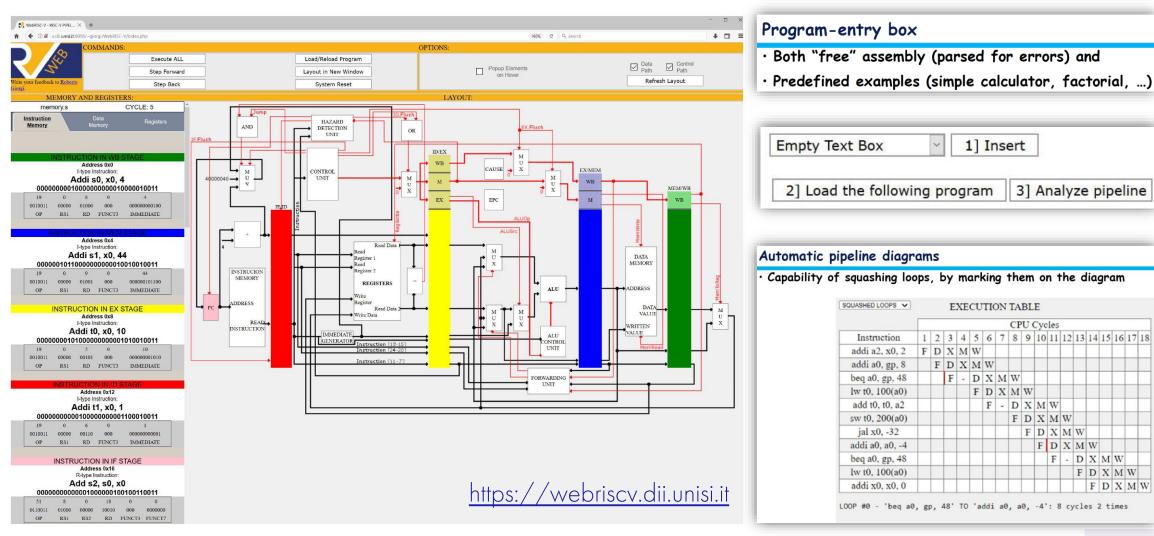
Challenges of Building an Open Source Ecosystem (2/2)

Call to Action

- Participate in consortia / standardisation bodies
 - o RISE, RVI, UXL
- Contribution to frameworks and tools used in multiple projects
 - Frameworks / APIs such as oneAPI, xsimd, OpenMP runtimes
 - Compilers are ubiquitous. Improvements in toolchain needed for one project helps many others
 - Raise issues for GCC and LLVM
- Improvements in OS packages, such as SIMD for frequently used operations (e.g. zlib (de)compression)
- RISE put out <u>RFPs</u> for prioritised development work
- Contribute to your favourite project

Open source software very open to pull requests, e.g.

- OS bring up (Fedora, Ubuntu, Android)
- OpenBLAS has had branch risc-v since August 2022
- Linux kernel supports hardware interfaces for with new non-ISA specs (e.g. hardware probe)
- 60/100 last commits in QEMU have a 'riscv' tag


How to Optimise Code

- What are good / bad practices?
 - Use up-to-date toolchain. Most recently released, or better close to tip of tree
 - LLVM has autovec, GCC in the works
 - RISE optimisation guide imminently available (RV64GCV)
- Micro-architecture agnostic
 - o Can double check codegen on Compiler Explorer
 - Proxy for performance via dynamic instruction counts in emulator
- Optimised for 'generic' target
 - $\circ\quad$ Stick to intrinsics, and v1.0 vector spec
 - What LMUL, what ILP, what order? Don't over optimise. Strip-mined loops are good.
 - Don't optimise for order OoO doesn't care, and different in-order may prefer different ordering
 - Performance estimation via LLVM MCA, for example

WebRISC-V: a web-based educational simulator

Providing a simple, easy accessible educational tool to test RISC-V programs on a pipelined processor.

SW stack for future HPC machines based on RISC-V 128 bit

Opportunities and challenges for RISC-V and 128 bit

Heterogeneity

ISA extension is about managing heterogeneity in an homogenous way:

- Base RISC-V ISA on all clusters
- Various set of ISA extension on different clusters

Operating System

A 128 bit address space can provide a unified view of the 100 M cores:

- · Single system image of the machine
- A 128 bit process spans the whole machine with a single virtual address space

Issues:

- Distributed system issues. Like what is the status of a 128 bit process?
- Threads migration across clusters?
- Need for transactions?

Starting point:

PGAS and its variants

Langages & Tools

A single address space for a process means:

- The compiler could work on the full application at once
- Room for a generalised OpenMP-like programming model
- Potentially replace MPI by VM operations

Opportunity:

MLIR-based DSL.

Issues:

• Need for transactions?

[1] A. Waterman and K. Asanović, "Chapter 6, RV128I Base Integer Instruction Set, Version 1.7," in The RISC-V Instruction Set Manual - Volume I: Unpriviliged ISA, 20191213, The RISC-V Foundation, 2019. Available online at https://riscv.org/technical/

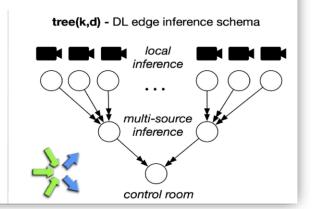
Name	Registers	Register width	Address width
RV32	32	32	bit
RV32E	16	32	bit
RV64	32	64 bit	
RV128	32	128 bit	

specifications/

- Addresses and integers are 128 bit wide.
- Still base ISA + ISA extensions, just like 32 and 64 bit :
 - Integer multiply & divide
 - 32 bit floating-point
 - 64 bit floating-point
 - 128 bit floating-point
 - · etc.

The challenge is how to take advantage of RISC-V and 128 bit to improve

- The heterogeneity (►) of the machine
- •The operating system stack
- Programming languages and tools


RISC-V for AI: enabling modern workloads on modern HW

Use case: Man Down Detection

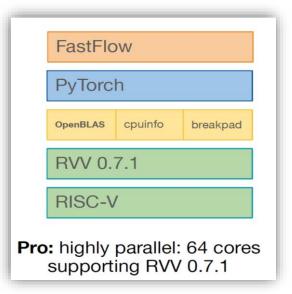
Goal: real-time distributed Al surveillance at a large scale

Target: detect people in lying on the ground in distress

Design: leverage YOLO-V5 on multiple RISC-V-based edge nodes in a tree structure connected via FastFlow

Challenges: limited RISC-V ecosystem, need to port:

- FastFlow
- Al library (e.g., PyTorch)

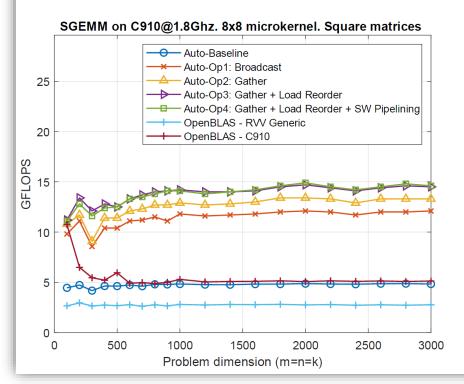

Outcome: implemented with the Fast Federated Learning (FFL) framework:

- based on C/C++ for performance (libtorch + FastFlow)
- supports both federated training and distributed inference

Accelerated PyTorch WiP: preliminary results

System	Cores	Total [s]	[ms]/image
k230	1	254.11	79.41
Milk-V (OpenBLAS)	1	254.91	79.66
Milk-V	64	137.91	43.09
Milk-V (OpenBLAS)	64	25.88	8.08
Intel	1	11.76	3.67
Intel	64	1.95	0.61

4-layer (2 convolutional + 2 fully connected) DNN performance on 100 batches of 32 MNIST images



Performance analysis (& optimization) of BERT on RISC-V

We focus on BERT + inference

- Useful across several NLP tasks
- Illustrative of the potential of architectures and space for optimization in transformers
- Inference typically deployed on low-power CPUs, typically with SIMD

Results - C910, 8x8 microkernel, square matrices

- Auto-Baseline vs. OpenBLAS
 - 1.72x improvement vs. OpenBLAS RVV Generic
 - Similar performance than OpenBLAS C910
- Auto-Op1 (bcast)
 - 2.38x improvement vs. Auto-Baseline
- Auto-Op2 (gather)
 - 2.62x improvement vs. Auto-Baseline
- Auto-Op3 (load reorder)
 - 2.90x improvement vs. Auto-Baseline
 - 2.59x improvement vs. C910 OpenBLAS
- Auto-Op4 (SW pipelining)
 - 2.88x improvement vs. Auto-Baseline

HPC на RISC-V: почему уже пора?

HPC в мировых трендах экосистемы RISC-V

Примеры докладов с HPC RISC-V воркшопов 2024

RISC-V HW: на чем тестировать HPC SW уже сейчас и чего ждать

Выводы и полезные ссылки

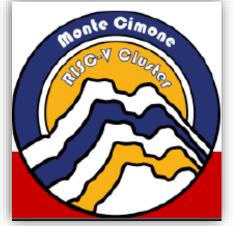
TA

Кластеры

Barcelona Supercomputer Center(<u>BSC</u>)

Board	os	Details
PolarFire	Fedora	4 cores w/ 2 GB
BeagleV	Fedora	2 cores w/ 8 GB
Unmatched	Fedora/Ubuntu	4 cores w/ 16 GB
Allwinner D1 (Vector extension)	Fedora	1 core w/ 2 GB

Edinburgh Parallel Computing Center (EPCC)

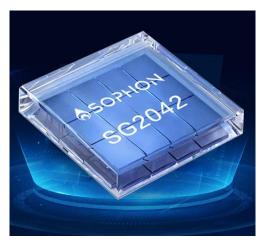

Board	Processor (SoC)	# Cores	DRAM (GB)	Qty
NezhaSTU	C906 (D1)	1	0.5	4
MangoPi MQ-Pro	C906 (D1)	1	1	2
HiFive Unmatched	U74 (FU740)	4	16	1
StarFive VisionFive V1	U74(JH7100)	2	8	3
StarFive VisionFive V2	U74(JH7110)	4	8	15
Lichee Pi 4A (on order)	C910 (TH1520)	4	16	2

E4: Monte Cimone (V1)

4x E4 RV007 1U Custom Server Blades:

- 2x SiFive U740 SoC with 4x U74 RV64GCB cores
- 16GB of **DDR4**
- 1TB node-local NVME storage
- PCle expansion card w/InfiniBand HCAs
- Ethernet + IB parallel networks

E4: Monte Cimone (V2 = V1 + SG 2042)



^{*} Источник: https://excalibur.ac.uk/excalibur-events-isc-23/

Milk-V Pioneer – IP для датацентров и AI/ML

- **Pioneer Box**
 - 1X SG2042 CPU
 - 1x Developer Board
 - 250W ATX Power supply
 - Intel AX210 WiFi 6E / BT5.2 card
 - Dual 10G SFP Network Card
 - Graphice Card AMD Radeon RX550 4GB
 - Nice and compact enclousre with carrying handle
 - 1TB Nyme SSD
 - 2x 16G DDR4
 - Powerful RGB CPU cooler

Milk-V Vega – первый в мире RISC-V коммутатор стандарта 10GbE компании Shenzhen MilkV Technology (Milk-V).

milky

Предназначен для:

- сетей широкополосного доступа,
- платформ видеонаблюдения и аудиовизуальных сервисов,
- систем умных городов и пр.

> 1 TFLOPS(FP64)

- 64 Cores
- 2 GHz
- 120 W TDP
- 3200 MHz (Max DIMM Frequency)
- 1 Gbit Ethernet
- 1 LPC

- Up to 256 GB RAM
- 4 MB L1 Cache
- 16 MB L2 Cach2
- 64 MB L3 Cache
- 2 SPI Flash Interface
- · 2 General SPI Controller

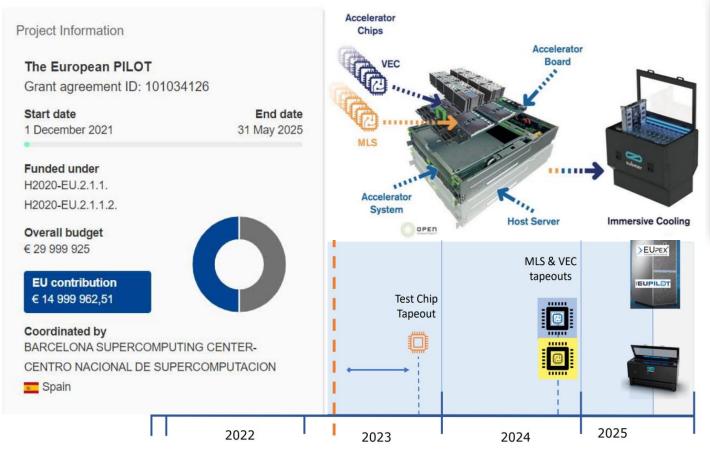
* Источник: https://servernews.ru/1081875

Banana Pi BPI-F3: 8-ядерный процессор SpacemiT K1

https://docs.banana-pi.org/en/BPI-F3/BananaPi_BPI-F3

- Ядра SpacemiT X60 (4 ядра из 8 с Integrated Matrix Extension).
 - 256-битные векторные регистры.
 - 1.3x Arm Cortex A55.
- <u>Бенчмарки</u>: 2.0 TOPs AI.
- Спецификация: https://github.com/space-mit/riscv-ime-extension-spec

BPI-F3 SpacemiT K1
Octa-core RISC-V



Доступны для заказа.

7 794 ₽ Цена за 1 лот •

EUPILOT: разработка RISC-V ускорителей для HPC и AI

- Consortium: 19 Partners

 **Consortium: 19 Partn
- Создание европейской платформы для НРС и AI.
- Достижение европейского цифрового суверенитета в НРС.

Target: Chips → **Deployments**

- Основа для европейских систем Exascale.
- Расширение экосистемы RISC-V на домены HPC и HPDA.
- Hardware Chips → Modules → Boards
 Systems Boards → Systems → Liquid Immersion Deployments
 Software Drivers → OS → Compilers → Frameworks → Apps

http://pulp-platform.org

Occamy от ETH (Zurich)

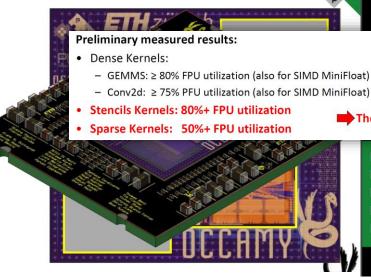
A 432-core, Multi-TFLOPs RISC-V-Based 2.5D Chiplet System for Ultra-Efficient (Mini-)Floating-Point Computation

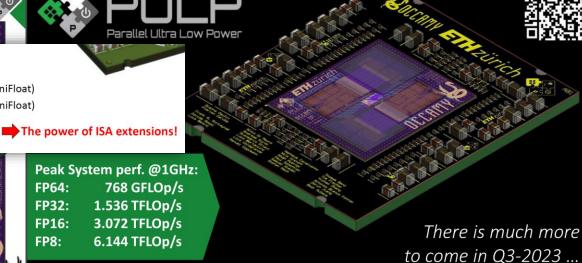
Our latest design Occamy: 0.75 TFLOP/s, 400+ cores

Dual Chiplet System Occamy:

- 216+1 RISC-V Cores
- 0.75 TFLOP/s
- GF12LPP
- Area: 73mm²

2x 16GByte HBM2e DRAMs Micron


2.5D Integration

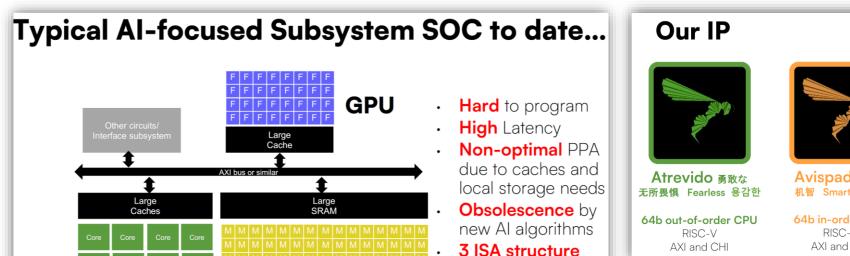

Silicon Interposer Hedwig:

- Technology: 65nm, passive (only BEOL)
- Area: 26.3mm x 23.05mm

Carrier PCB:

- RO4350B (Low-CTE, high stability)
- 52.5mm x 45mm
- Initial discussions 20th of October 2020
- Started on 20th of April 2021
- Taped out Chiplet on 1st of July 2022
- Taped out Interposer on 15th of October 2022
- · Currently being assembled

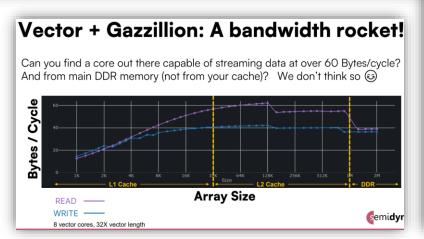
@pulp_platform

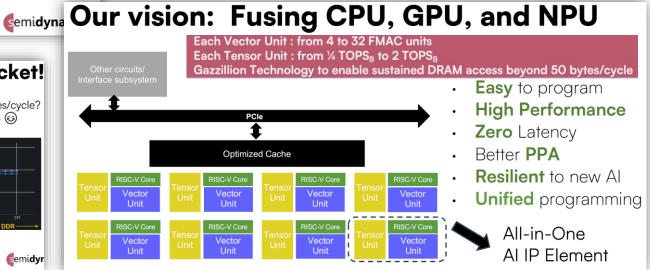

M = MAC(int)

F = FMAC(float)

CPUs

TA Dro

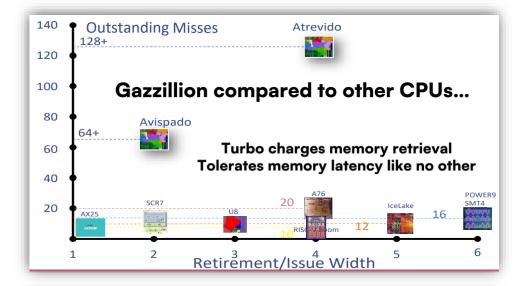

Разработки Semidynamics для Big Data & AI/ML

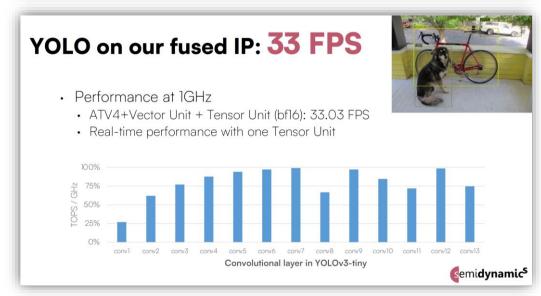

pose high change

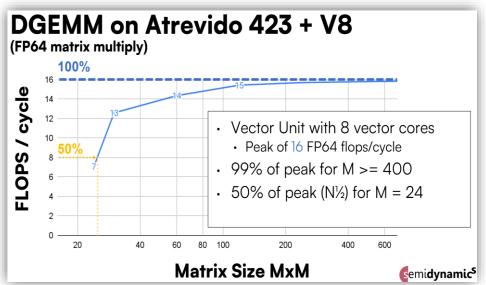
risk

NPU

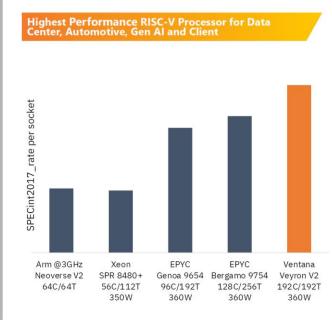
Atrevido 423-V8 от Semidynamics для Big Data & AI/ML


The Semidynamics Proposal


- Powerful Out Of Order based on Risc-V
- Combine CPU with Vector and Tensor unit to create powerful Al capable Compute building blocks
- Enable Hypervisor Support for Containerization
- Enable Crypto for Security / Privacy
- Easy to combine with custom logic / Unit 3 custom instructions
- Use of Gazzillion™ Technology to efficiently manage large date sets


Benefits

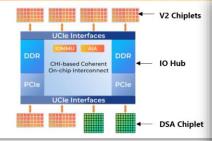
- · Easy to program
- High Performance for Parallel Codes
- Zero Communication Latency



[&]quot; Источник: https://www.eejournal.com/article/want-tailormade-screamingly-high-performance-risc-v64-ip/

Ventana Veyron (V2)

Veyron V2: Momentum to Mainstream with Complete Platform


Highlights

- +40% performance, 32 cores per cluster, 4nm
- UCle chiplet
- RISC-V Vector Extension support
- Ventana Al Matrix Extensions
- Server-class IOMMU
- RISE support
- Domain Specific Acceleration

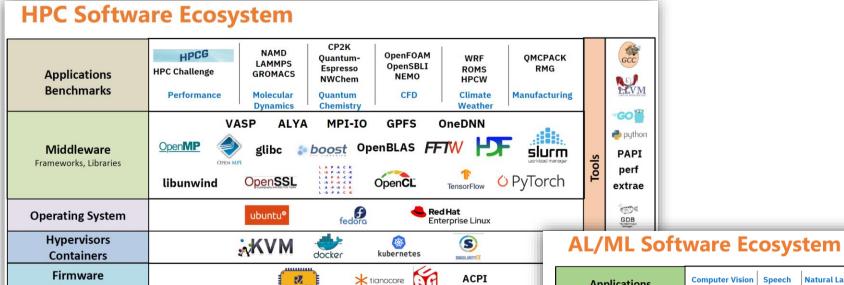
Up to 32 cores Vevron V2 Core 128 MB RVA23 MOP Cache physically sliced 128 KB L1 D-cache 512 KB I-cache 1 MB L2 D-cache **Coherent Bus CPU Cluster** Veyron V2 Chiplet

CHI-over-UCIe D2D

Available as UCIe-Compatible Chiplets or IP

Vector Unit

- Full RVV1.0 "V" support plus new standard and custom RISC-V extensions:
 - Vector crypto
 - FP16 / BF16
 - Widening 8x8 int8 and BF16 matrix multiplies
- DSA Chiplet VLEN = DLEN =512
 - 32 64B-wide vector registers
 - 64B-wide fully pipelined load, store, and register operations
 - No double pumping of datapaths
 - 64B load plus 64B store per cycle (with arbitrary alignments)
 - Area and power efficient high-performance design
 - · Separate vector register-operation scheduler, register file, and execution pipes from the "scalar" core
 - · Five parallel execution pipes: Arithmetic, Mask, Permute, Load data, Store data
 - Out-of-order execution across execution pipes and within pipes without register renaming
 - LMUL chaining
 - · Interleaving of LMUL>1 operations and complex operations within each pipe based on dependencies
 - No speculative register execution but full speculative load/store execution
 - No speculative execution recovery buffers


Early Boot, BIOS

Platform

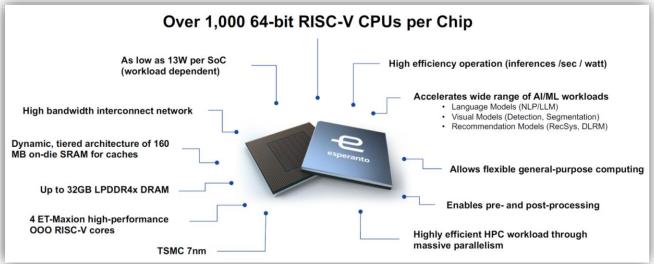
HPC Server

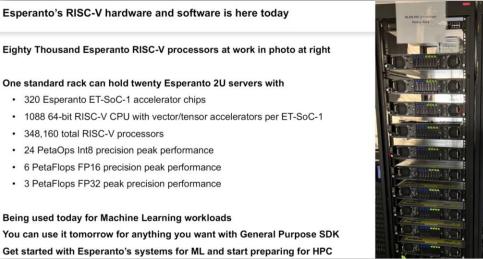
TA DYC

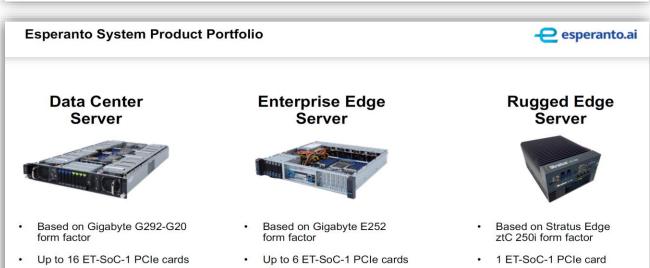
Ventana Veyron: планы

A STATE OF THE PARTY OF THE PAR

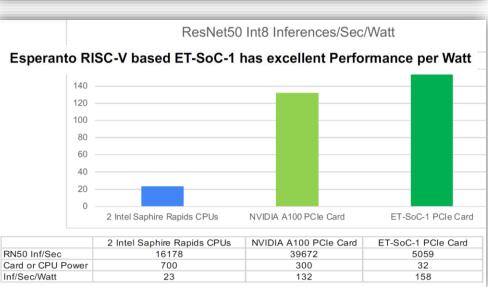
Computer Vision Speech Natural Language **Autonomous** Recommendations Finance python **Applications** Processing **Systems** (3 ResNet нмм GPT SLAM **Content Filter** ARIMA Models VGGNet YOLO **LSTM BERT** ControlNet **Gradient Boosted Monte Carlo** O PyTorch ONNX **Frameworks** EEVM ONNX RUNTIME **○** GLOW **TFRT Runtimes** MLIR ROCm HAL **INVIDIA** Open**CL** CUDA Libraries **Hypervisors KVM** (0, d) Containers kubernetes docker MARRY IN Linux fedoro **Operating System** ubuntu[®] OpenOCD * tianocore Firmware **ACPI** Early Boot, BIOS **Platform**


Ventana Veyron AI/ML Server


Over 16,000 RISC-V Cores


ET-SoC-1: Esperanto's RISC-V Supercomputer on a Chip

Over 1,000 RISC-V Cores



Over 6,000 RISC-V Cores

Esperanto ET-Minion

ET-Minion is an Energy-Efficient RISC-V CPU with a Vector/Tensor Unit CPU is tailored for Massively Parallel ML Applications

esperanto.ai

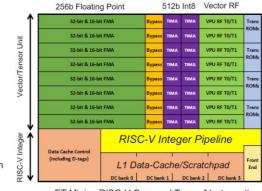
ET-MINION IS A CUSTOM BUILT 64-BIT RISC-V PROCESSOR

- · In-order pipeline with low gates/stage to improve MHz at low voltages
- · Architecture and circuits optimized to enable low-voltage operation
- · Two hardware threads of execution
- · Software configurable L1 data-cache and/or scratchpad

ML OPTIMIZED VECTOR/TENSOR UNIT

512-bit wide integer per cycle

128 8-bit integer operations per cycle, accumulates to 32-bit Int


256-bit wide floating point per cycle
16 32-bit single precision operations per cycle

32 16-bit half precision operations per cycle

New multi-cycle Tensor Instructions

- · Can run for up to 512 cycles (up to 32K operations) with one tensor instruction
- · Reduces instruction fetch bandwidth and reduces power
- RISC-V integer pipeline put to sleep during tensor instructions

Vector transcendental instructions

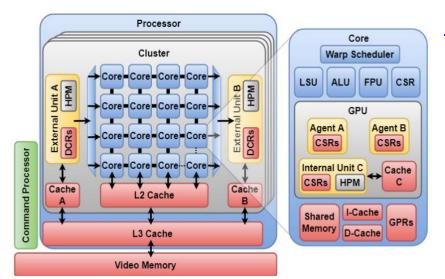
ET-Minion RISC-V Core and Tensor/Vector unit optimized for low-voltage operation to improve energy-efficiency

RISC-V is the right choice for future merged ML/HPC Systems

Optimized for energy-efficient ML operations. Each ET-Minion can deliver peak of 128 Int8 GOPS per GHz

RISC-V is not only the best choice, RISC-V is the only logical choice for future ML/HPC systems

Making systems easier to program with scalable set of processors with one instruction set should be the goal


- x86 and ARM processors too heavyweight to serve as both main CPU and accelerator
- GPU's too hard to program, can't be the main processor
- Only RISC-V has the ability for both:
- · High performance main cores: e.g. Tenstorrent, SemiDynamics, Ventana, Andes, RIVOS, ET-Maxion and others
- Lightweight RVV vector cores: Esperanto's ET-Minions and likely many others

RISC-V is now mature and ready to start the revolution for future ML/HPC computing systems

Dave's prediction: RISC-V based system will win the Green500 in the next 5 years

Vortex: OpenCL Compatible RISC-V GPGPU

<u>Работает на FPGA</u>, есть <u>конвейер</u> для запуска программ на NVIDIA CUDA

ISA Considerations

Operation Type	Considerations
Vertex/Frag Shaders	V Extension or Vec4 Custom
Number of Registers	Typically GPUs have more Vector Registers (e.g. 128) to avoid use of stack in a multithreaded environment
Data Types	Single Precision / Half Precision / fixed point (8 or + for HDR)
ISA Width	Often wide instructions 128-bit with embedded shuffle and write masks
Constant Register	GPUs have also a number of constant registers for uniforms
ABI	How to map Varyings / Uniforms / Attributes ?

POCL SPIR-V-OpenCL **NVVM-SPIR-V** execute Vortex translator translator **CUDA OpenCL** Object file **NVVM IR** SPIR-V (RISC-V GPU) source code (Sec. 3.5) (Sec. 3.4) (Sec. 3.3) link RISC-V library

Translating applications in Rodinia benchmark Vortex(v0.2.2) NVPTX-SPIR-V translator(v0.1.0)

application	feature	support?
b+tree	-	yes
bfs	-	yes
cfd	double3 type	yes
huffman	atomic	yes
pathfinder	memory hierachy	yes
gaussian	-	yes
hotspot	-	yes
hotspot3D	-	yes
lud	memory hierachy	yes
nw	-	yes
streamcluster	-	yes
particlefilter	d2i	on going
backprop	log2f	on going
lavaMD	d2i	on going
kmeans	texture	no
hybrid sort	texture	no
leukocyte	texture	no

- Vortex:
 - Support RISC-V RV32IMF ISA
 - Scalability: up to 64 cores with optional L2 and L3 caches
- Performance:
 - 1024 total threads running at 250 MHz
 - 128 Gflops of compute bandwidth
 - 16 GB/s of memory bandwidth

- Software: OpenCL 1.2 Support Supported FPGAs:
- Intel Arria 10
- Intel Stratix 10

HPC на RISC-V: почему уже пора?

HPC в мировых трендах экосистемы RISC-V

Примеры докладов с HPC RISC-V воркшопов 2024

RISC-V HW: на чем тестировать HPC SW уже сейчас и чего ждать

Выводы и полезные ссылки

Выводы

- **RISC-V быстро развивается**: новые расширения ISA, процессоры серверного класса, ускорители, интерконнекты.
- Перенос HPC кодов и реализация HPC алгоритмов на RISC-V длительный процесс, RISC-V HPC SIG призывает начинать его уже сейчас.
- **Актуальная задача перенос SparseBLAS на RISC-V,** можно начать с библиотек Eigen, SuiteSparse, Kokkos.
- Для тестирования сейчас используются кластеры, собранные из существующих RISC-V плат, симуляторы, есть RISC-V GPU на FPGA.
- В мире работы идут более трех лет.

SIG-HPC Initiatives

- Guide and enable the community
 - Virtual Memory
 - SV57, SV57K, SV64, SV128
 - Accelerators
 - ISA Extensions
 - HPC Software Stack
 - Starting with HPC Libraries
 - HPC SW & HW ecosystem & roadmap

(!) Обновления на <u>Github</u>:

- HPC SIG
- AI/ML & Graphics SIG
- Vector SIG

Москва, ул. Рочдельская, 15, стр. 13 +7 800 777-06-11

yadro.com